(19) 日本国特許庁(JP)

(12) 特許公報(B2)

(11) 特許番号

特許第4243208号

(P4243208)

(45) 発行日 平成21年3月25日 (2009. 3. 25)

(24)	1)登録日	平成21年1月9日	(2009.	1.9	9)
<u> </u>			(- /

	F I		
3/44	(2006.01)	HO1Q	3/44
1/40	(2006.01)	HO1Q	1/40
9/30	(2006.01)	HO1Q	9/30
19/32	(2006.01)	HO1Q	19/32
	3/44 1/40 9/30 19/32	3/44 (2006.01) 1/40 (2006.01) 9/30 (2006.01) 19/32 (2006.01)	F I 3/44 (2006.01) HO1Q 1/40 (2006.01) HO1Q 9/30 (2006.01) HO1Q 19/32 (2006.01) HO1Q

請求項の数	2	(全)	15	頁)
-------	---	-----	----	----

 (21) 出願番号 (22) 出願日 (65) 公開番号 (43) 公開日 審査請求日 	特願2004-69194 (P2004-69194) 平成16年3月11日 (2004.3.11) 特開2005-160011 (P2005-160011A) 平成17年6月16日 (2005.6.16) 平成18年9月21日 (2006.9.21)	(73)特許権者 (73)特許権者	 ・ 393031586 株式会社国際電気通信基礎技術研究所 京都府相楽郡精華町光台二丁目2番地2 ・ 000101857 アンテナ技研株式会社
(31)優先権主張番号(32)優先日	特願2003-372802 (P2003-372802) 平成15年10月31日 (2003-10-31)		埼玉県さいたま市見沼区宮ヶ谷塔4丁目7 2番曲
(33) 優先権主張国	日本国(JP)	(74)代理人	2 留地 100081422 弁理士 田中 光雄
(出願人による申告)	平成15年度通信・放送機構、研	(74)代理人	100098280
究テーマ「自律分散型	2無線ネットワークの研究開発」に		弁理士 石野 正弘
関する委託研究、産業	総活力再生特別措置法第30条の適	(72)発明者	ブレット・ハンナ
用を受ける特許出願			京都府相楽郡精華町光台二丁目2番地2
			株式会社国際電気通信基礎技術研究所内
			最終頁に続く

(54) 【発明の名称】 アレーアンテナ装置

(57)【特許請求の範囲】

【請求項1】

無線信号を送受信するための給電素子と、上記給電素子から所定の間隔だけ離れて設け られた少なくとも1つの無給電素子と、上記無給電素子に接続された可変リアクタンス素 子とを備え、上記可変リアクタンス素子のリアクタンス値を変化させることにより、上記 無給電素子をそれぞれ導波器又は反射器として動作させ、アレーアンテナ装置の指向特性 を変化させるアレーアンテナ装置において、

上端面を少なくとも有する<u>円</u>筒形状を有する接地導体の上端面上に、上記接地導体の筒の径と実質的に同一の径を有する<u>円</u>柱形状を有する誘電体をそれらの中心軸が一致するように配置し、上記誘電体内に上記給電素子を配置し、上記誘電体の外周面上に上記無給電素子を配置し、

上記無線信号の周波数の自由空間波長を oとし、上記誘電体中を伝搬する無線信号の 波長を rとしたとき、

<u>(1)上記接地導体の円筒形状の高さ(h_s)を0.25 oに設定し、</u>

<u>(2)上記誘電体の円柱形状の高さ(h_{d p})を0.25</u>r以上で0.25 o以下の 範囲で設定し、

<u>(3)上記誘電体の円柱形状の半径(r_{dg})を0.23 r以上で0.33 r以下の</u> 範囲で設定することによりアンテナ装置の容積比を低減したことを特徴とするアレーアン テナ装置。

【請求項2】

【発明の詳細な説明】

【技術分野】

[0001]

本発明は、複数のアンテナ素子からなるアレーアンテナ装置の指向特性を変化させることができるアレーアンテナ装置に関し、特に、電子制御導波器アレーアンテナ装置(Electronically Steerable Passive Array Radiator Antenna)の指向特性を適応的に変化させることができるアレーアンテナ装置に関する。

【背景技術】

[0002]

従来技術の電子制御導波器アレーアンテナ装置は、例えば、非特許文献1や特許文献1 において提案されている。この電子制御導波器アレーアンテナ装置は、無線信号が給電さ れる給電素子と、この給電素子から所定の間隔だけ離れて設けられ、無線信号が給電され ない少なくとも1個の無給電素子と、この無給電素子に接続された可変リアクタンス素子 とから成るアレーアンテナを備え、上記可変リアクタンス素子のリアクタンス値を変化さ せることにより、上記アレーアンテナ装置の指向特性を変化させることができる。 【0003】

この電子制御導波器アレーアンテナ装置において、このアンテナ装置の多面的なビーム 形成能力はマルチパスフェーディング及び同一チャネル干渉の低減を可能にし、かつ入射 20 信号の正確な到来方向(DOA)推定を可能にする。また、このアンテナ装置は、無線コ ンピュータネットワーク及び方向探知の能力を最大化するアプリケーションを有している

[0004]

【特許文献1】特開2001-024431号公報。

【特許文献2】特開2003-114268号公報。

【非特許文献1】T. Ohira et al., "Electronically steerable passive array radiato rs for low low-cost analog adaptive beamforming", IEEE International Conference on Phased Array Systems and Technology, pp.101-106, Dana Point, U.S.A., May 2000

30

40

10

【非特許文献 2】Y. Ojiro, et al., "Improvement of elevation directivity for ESPA R antennas with finite ground plane", IEEE AP-S Internal Symposium, Boston, U.S. A., July 2001.

【非特許文献 3】J.W. Lu, et al., "A performance comparison of smart antenna tech nology for wireless mobile computing terminals", Proceeding of Asia Pacific Micr owave Conference, pp.581–584, Taipei, Taiwan, 3rd-6th December 2001.

【非特許文献4】D.V. Thiel et al., "Switched parasitic antennas for cellular com munications", Published by Artech House, pp.170-180, 2002.

【非特許文献 5】M. Kominami, et al., "Dipole and slot elements and arrays on sem i-infinite substrates", IEEE Transactions on Antennas Propagation, Vol.33, No.6, pp.600–607, June 1994.

【非特許文献 6】N. Kishioka et al., "FDTD analysis of strip dipole antenna cover ed by dielectric material", Proceedings of Asia Pacific Microwave Conference, pp .1352-1355, Sydney, Australia, 3rd-6th December 2000.

【非特許文献7】J.D. Krauss, "Antennas", Published by McGraw-Hill, pp.725-726, 1 988.

【非特許文献 8】T. Ohira et al., "Handheld microwave direction-of-arrival finder based on varactor tuned aerial beamforming", Proc. Asia Pacific Microwave Confe rence, pp.585-588, Taipei, Taiwan, 3rd-6th December 2001.

【発明の開示】

【発明が解決しようとする課題】

[0005]

しかしながら、移動体アプリケーションにおいて実用的であり、またはその動作環境に おいて邪魔にならないようなものであるためには、このアンテナ装置の小型化が命題であ る。

[0006]

図12は、例えば非特許文献2において開示されている、第1の従来例に係る電子制御 導波器アレーアンテナ装置100Aの構成を示す斜視図である。図12において、自由空 間における従来のアンテナ設計における寸法も示している。

[0007]

図12において、上端面を有するが下面の端面を有しない、いわゆるスカート部を備え た円筒形状の接地導体11Aの上端面上に、1本の給電素子A0と、当該給電素子A0を 中心として所定の距離だけ離間した円周上に6本の無給電素子A1乃至A6が、当該接地 導体11Aの上面端面に対して垂直かつ互いに平行となるように植立されている。ここで 、給電素子A0は下端部が接地導体11Aとは電気的に絶縁されるように支持され、その 下端部は給電ケーブルを介して無線機に接続されている。また、各無給電素子A1乃至A 6は、その下端部が接地導体11Aとは電気的に絶縁されるように支持され、各無給電素 子A1乃至A6の下端部は可変リアクタンス素子を介して接地されている。 【0008】

以上のように構成された電子制御導波器アレーアンテナ装置100Aにおいて、各素子 20 A0乃至A6の長さは所望の周波数(当該周波数の波長を 0とする。)で共振するよう に0.25 0よりわずかに短い。接地導体11Aには、主ローブの放射パターンの仰角 を低減すると同時に接地導体11Aの円筒半径を縮小できるように導電スカート(円筒周 囲部)が使用されている(非特許文献2参照。)。

【0009】

ところで、モノポールの電子制御導波器アレーアンテナ装置を中実の円柱誘電体に埋め 込むことにより、当該アレーアンテナ装置の小型化方法は既に、例えば非特許文献3にお いて開示されている。例えば、当該アレーアンテナ装置を、自由空間の場合より高い誘電 率の誘電体内に完全に埋め込む場合、アレーアンテナ装置の寸法を次の式(1)に従って 縮小することができる。

30

10

 $\lambda_r = \frac{\lambda_O}{\sqrt{\mu_r \varepsilon_r}} \tag{1}$

[0011]

【0010】 【数1】

ここで、 「は無損失物質内を無限に伝搬する電磁波エネルギーの波長であり、 ₀は 自由空間の波長であり、µ_ア及び 「はそれぞれ物質の比透磁率及び比誘電率である。 【0012】

図13は、例えば非特許文献4-6において開示された、第2の従来例に係る電子制御 40 導波器アレーアンテナ装置100Bの構成を示す斜視図である。図13では、上述のサイ ズ縮小方法を使用したアレーアンテナ装置の寸法も示している。

【0013】

図13において、円板形状の接地導体11B上に、給電素子A0及び無給電素子A1乃 至A6が配置されている。ここで、アレーアンテナ装置100Bのサイズは、円柱誘電体 13Bの内側半径を0.25 「にし、無給電素子A1乃至A6をその内側半径の円周上 の位置に取り付けることで縮小することができる。無給電素子A1乃至A6の新たな長さ は、式(1)の「項を誘電体13Bの誘電率と自由空間媒体の誘電率との平均である有 効誘電率項

[数1]

e = (0 + r) / 2

で置換することにより概算が可能である(非特許文献4-6参照。)。

【0014】

以上説明したように、従来例では、いまだアレーアンテナ装置では、そのスカートのつ ば部分が大きく、さらに小型化が望まれている。

(4)

[0015]

本発明の目的は以上の問題点を解決し、従来技術に比較してさらに小型化できるアレー アンテナ装置を提供することにある。

【課題を解決するための手段】

【0016】

10

本発明に係るアレーアンテナ装置は、無線信号を送受信するための給電素子と、上記給 電素子から所定の間隔だけ離れて設けられた少なくとも1つの無給電素子と、上記無給電 素子に接続された可変リアクタンス素子とを備え、上記可変リアクタンス素子のリアクタ ンス値を変化させることにより、上記無給電素子をそれぞれ導波器又は反射器として動作 させ、アレーアンテナ装置の指向特性を変化させるアレーアンテナ装置において、

上端面を少なくとも有する筒形状を有する接地導体の上端面上に、上記接地導体の筒の 径と実質的に同一の径を有する柱形状を有する誘電体をそれらの中心軸が一致するように 配置し、上記誘電体内に上記給電素子を配置し、上記誘電体の外周面上に上記無給電素子 を配置したことを特徴とする。

【0017】

上記アレーアンテナ装置において、好ましくは、上記誘電体は略円柱形状、略楕円形状 又は多角柱形状を有することを特徴とする。

【発明の効果】

【0018】

本発明に係るアレーアンテナ装置によれば、従来技術のアレーアンテナ装置に比較して 、その半径を実質的に接地導体の半径と等しくすることができ、これにより、当該アレー アンテナ装置全体のサイズを大幅に小さくし、小型化できる。

【発明を実施するための最良の形態】

【0019】

以下、本発明に係る実施形態について図面を参照して説明する。なお、同様の構成要素 ³⁰ については同一の符号を付している。

[0020]

< 第1の実施形態 >

図1は本発明の第1の実施形態に係るアレーアンテナ装置100Cの構成を示す斜視図 であり、図2は図1のアレーアンテナ装置100Cを用いるアレーアンテナの制御装置の 構成を示すブロック図である。

【0021】

第1の実施形態に係るアレーアンテナ装置100Cは、無線信号を送受信するための給 電素子A0と、給電素子から所定の間隔だけ離れて設けられた6本の無給電素子A1-A 6と、各無給電素子A1-A6にそれぞれ接続された6個の可変リアクタンス素子12-1乃至12-6とを備え、それらのリアクタンス値を変化させることにより、無給電素子 A1-A6をそれぞれ導波器又は反射器として動作させ、アレーアンテナ装置の指向特性 を変化させる電子制御導波器アレーアンテナ装置である。ここで、上端面を少なくとも有 する中空の円筒形状の接地導体11Cの上端面上に、接地導体11Cの円筒の半径と実質 的に同一の半径を有する円柱形状を有する誘電体13Cをそれらの中心軸が一致するよう に配置し、誘電体13C内に給電素子A0を配置し、誘電体13Cの外周面上に無給電素 子A1-A6を配置したことを特徴としている。

[0022]

図 1 及び図 2 において、長さh_sで半径 r_{dg}の円筒形状の接地導体 1 1 C の上端面上 に、例えばアルミナ(比誘電率 _r = 9 . 6)にてなる長さ h_{dp}で半径 r_{dg}の円柱形 ⁵⁰

状の誘電体13Cがそれらの中心軸が一致するように配置されて、例えば、所定の接着剤 を用いて固定される。誘電体13Cの中心軸において長さh。のモノポールの給電素子A 0が中心軸に沿って配置されるように、誘電体13C内に埋め込まれて設けられる。給電 素子A0の下端部は給電点となり、給電用同軸ケーブル5などを介して無線送信機7など を含む無線機に接続される。また、各無給電素子A1乃至A6は誘電体と同じ長さh╻。 を有し、誘電体13Cの外周面上に等間隔となるように配置されている。

図2において、給電素子A0の給電点は、給電用同軸ケーブル5及びサーキュレータ6 を介して低雑音増幅器(LNA)1に接続され、また、無給電素子A1乃至A6はそれぞ れ可変リアクタンス素子12-1乃至12-6に接続され、これら可変リアクタンス素子 12-1乃至12-6は、適応制御型コントローラ20からの制御電圧信号に応答してそ のリアクタンス値を変化させる。

[0024]

図1及び図2において、給電素子A0の下端部は接地導体11と電気的に絶縁され、各 無給電素子A1乃至A6はそれぞれ、可変リアクタンス素子12-1乃至12-6を介し て、接地導体11に対して高周波的に接地される。可変リアクタンス素子12-1乃至1 2-6の動作を説明すると、例えば給電素子A0と無給電素子A1乃至A6の長手方向の 長さが実質的に同一であるとき、例えば、可変リアクタンス素子12-1がインダクタン ス性(L性)を有するときは、可変リアクタンス素子12-1は延長コイルとなり、無給 電素子A1の電気長が給電素子A0に比較して長くなり、反射器として働く。一方、例え ば、可変リアクタンス素子12-1がキャパシタンス性(C性)を有するときは、可変リ アクタンス素子12-1は短縮コンデンサとなり、無給電素子A1の電気長が給電素子A 0に比較して短くなり、導波器として働く。また、他の可変リアクタンス素子12-2乃 至12-6に接続された無給電素子A2乃至A6についても同様に動作する。 [0025]

従って、図2のアレーアンテナ装置100Cにおいて、各無給電素子A1乃至A6に接 続された可変リアクタンス素子12-1乃至12-6に印加する制御電圧値を変化させて 、その接合容量値であるリアクタンス値を変化させることにより、アレーアンテナ装置1 00Cの平面指向特性を変化させることができる。

[0026]

図2のアレーアンテナの制御装置において、アレーアンテナ100Cで受信される無線 信号を送信する送信局は、学習シーケンス信号発生器21で発生される所定の学習シーケ ンス信号と同一の信号パターンを有する学習シーケンス信号を含む所定のシンボルレート のディジタルデータ信号に従って、無線周波数の搬送波信号を、例えばBPSK、QPS Kなどのディジタル変調法を用いて変調し、当該変調信号を電力増幅して受信局のアレー アンテナ装置100cに向けて送信する。本実施形態においては、データ通信を行う前に 、送信局から受信局に向けて学習シーケンス信号を含む無線信号が送信され、受信局では 、適応制御型コントローラ20による適応制御処理が実行される。

[0027]

40 アレーアンテナ装置100Cは送信局からの無線信号を受信し、上記受信された信号は 、給電用同軸ケーブル5及びサーキュレータ6を介して低雑音増幅器(LNA)1に入力 されて増幅され、次いで、ダウンコンバータ(D/C)2は増幅された信号を所定の中間 周波数の信号(IF信号)に低域変換する。さらに、A/D変換器3は低域変換されたア ナログ信号をディジタル信号にA/D変換し、そのディジタル信号を適応制御型コントロ ーラ20及び復調器4に出力する。次いで、適応制御型コントローラ20は、入力される 受信信号と学習シーケンス信号とに基づいて、各可変リアクタンス素子のリアクタンス値 を、順次所定の差分幅だけ摂動させ、各リアクタンス値に対して所定の評価関数値(例え ば、受信信号の電力)を計算し、上記計算された評価関数値に基づいて、最急勾配法を用 いて、当該評価関数値が最大となるように、各リアクタンス値を反復して計算することに より、当該アレーアンテナ装置100Cの主ビームを所望波の方向に向けかつ干渉波の方

30

20

向にヌルを向けるための各可変リアクタンス素子のリアクタンス値を計算して設定するよ うに制御する。これにより、当該評価関数値が最大となるように、上記アレーアンテナ装 置100Cの主ビームを所望波の方向に向けかつ干渉波の方向にヌルを向けるための各可 変リアクタンス素子のバイアス電圧値を探索し、探索された各バイアス電圧値を有する制 御電圧信号を各可変リアクタンス素子に出力して設定する。

[0028]

以上説明したように、本実施形態に係るアレーアンテナ装置100Cにおいては、接地 導体11Cもまた、円柱形状の誘電体13C及び無給電素子A1-A6の配置半径と一致 する半径を有するように縮小され、従来例に比較して小型化できる。誘電体13Cは円柱 形状に限らず、略円柱形状、略楕円柱形状、略多角形柱形状などの柱形状であってもよい

10

[0029]

以上の実施形態においては、中空の円筒形状の接地導体11Cを用いているが、本発明 はこれに限らず、中空の概略円筒形状又は略楕円筒形状などの筒形状の接地導体、もしく は、中実の円柱形状、概略円柱形状又は略楕円柱形状などの柱形状の接地導体であっても よい。

[0030]

<第2の実施形態>

図3は本発明の第2の実施形態に係るアレーアンテナ装置100Dの構成を示す斜視図 であり、図4は図3のアレーアンテナ装置100Dの上面を示す上面図である。また、図 20 5 は図 3 のアレーアンテナ装置 1 0 0 D の無給電素子 A 1 の下部付近の構成を示す詳細正 面図である。本実施形態に係るアレーアンテナ装置100Dは、円柱形状の誘電体13C を備えた図1のアレーアンテナ装置100Cに比較して、12角柱形状の誘電体13Dを 備え、誘電体13Dの12個の外周矩形面のうち1つおきの外周矩形面にそれぞれストリ ップ形状の無給電素子A1-A6を形成したことを特徴としている。以下、第1の実施形 態との相違点を中心に詳細説明する。

[0031]

図3において、長さh。で半径rdgの円筒形状の接地導体11Dの上端面上に、例え ばポリカカーボネート(比誘電率 _r=2.9)にてなる長さh_dで半径r_dgの12角 柱形状の誘電体13Dがそれらの中心軸が一致するように配置されて、例えば、所定の接 着剤を用いて固定される。誘電体13Dの中心軸において長さh╻のモノポールの給電素 子A0が中心軸に沿って配置されるように、誘電体13D内に埋め込まれて設けられる。 給電素子A0の下端部は給電点となり、給電用同軸ケーブル5などを介して無線送信機7 などを含む無線機に接続される。また、各無給電素子A1乃至A6は長さh。を有し、誘 電体13Dの誘電体13Dの12個の外周矩形面のうち1つおきの外周矩形面にそれぞれ 所定の等しい間隔となるように、その長手方向が中心軸と平行となるようにストリップ 形状の無給電素子A1-A6を形成した。なお、図4の上面図に示すように、各無給電素 子A1乃至A6はそれぞれ、テフロン基板50上に導体パターン51を形成してなり、こ こで、誘電体13Dの12角柱形状の内面に接する内周円の半径はr。。である。 [0032]

図 5 の無給電素子 A 1 の導体パターン 5 1 の下端部の下側であってテフロン基板 5 0 上 において、端子導体61,62が形成され、ここで、端子導体62は接地導体11Dにね じ63止めされる。導体パターン51は抵抗R1を介して端子導体61に接続されるとと もに、例えば可変容量ダイオードである可変リアクタンス素子12-1を介して端子導体 62に接続される。端子導体61は抵抗R2,R3を介して端子導体62に接続されてい る。さらに、端子導体61は、テフロン基板50を厚さ方向で貫通するスルーホールに充 填されたスルーホール導体41を介して接地導体11Dに接続されている。また、端子導 体62は、テフロン基板50を厚さ方向で貫通するスルーホールに充填された複数のスル ーホール導体42を介して接地導体11Dに接続されている。 [0033]

30

40

以上説明したように、本実施形態に係るアレーアンテナ装置100Dにおいては、接地 導体11Dもまた、12角柱形状の誘電体13Dの内周半径及び無給電素子A1-A6の 配置半径と一致する半径を有するように縮小され、従来例に比較して小型化できる。 【0034】

以上の実施形態においては、中空の円筒形状の接地導体11Dを用いているが、本発明 はこれに限らず、中空の概略円筒形状又は略楕円筒形状などの筒形状の接地導体、もしく は、中実の円柱形状、概略円柱形状又は略楕円柱形状などの柱形状の接地導体であっても よい。

【0035】

以上の実施形態においては、12角柱形状の誘電体13Dを用いているが、本発明はこ ¹⁰ れに限らず、無給電素子の数に応じた多角柱形状の誘電体を用いてもよい。

【0036】

以上の実施形態においては、6本の無給電素子A1乃至A6を備えているが、本発明は これに限らず、少なくとも1本の無給電素子を備えることにより、アレーアンテナ装置の 指向特性を変化させてもよい。

【0037】

次いで、第1の実施形態に係るアレーアンテナ装置100C及び第2の実施形態に係る アレーアンテナ装置100Dのシミュレーション結果について以下に説明する。 【0038】

第1の実施形態に係るアレーアンテナ装置100Cでは、アレーアンテナ装置100C の構造について、アンソフト社製高周波電磁界構造シミュレータ(HFSS:High Frequ ency Structure Simulator)を用いてシミュレーションし、マルチニッチクラウディング を採用する所定の遺伝的アルゴリズムを使用して構造パラメータ及びリアクタンス値セッ ト(×₁,×₂,×₃,×₄,×₅,×₆)に対して最適化した。ここで、当該アレーア ンテナ装置100Cの構造について、一定のリアクタンス値が使用され得ないように適応 ビーム形成を使用しない到来方位角探索アプリケーションに関して最適化した。例えば、 30°以内までの到来方位角の計算は、30°で離隔された方位角での離散ビーム位置に おいて受信される信号強度を測定することにより、電子制御導波器アレーアンテナ装置で あるアレーアンテナ装置100Cを使用して達成することができる。ビームステアリング は、リアクタンス値セットを適応的に装荷された無給電素子A1-A6を用いて変化させ ることにより達成される。離隔30°の到来角仕様は、主ローブの電力半値ビーム幅が9 0°以下であるときに達成されている。

【0039】

本実施形態において、円柱形状の誘電体13Cに使用する材料は、比誘電率 ,が9.5で損失正接が0.015であるアルミナである。最適化コスト関数は、90°の半値電力幅(方位角)に関して無給電素子A1の方向の主ビームの指向性利得が最大となるように設定した。給電素子A0はインピーダンス整合回路を介して無線機に接続するために、反射減衰量は考慮しなかった。なお、シミュレーション周波数は2.484GHzに設定した。

[0040]

本発明者らのシミュレーション結果においては、誘電体13C及び無給電素子A1-A 6の高さh_d_pの最適化範囲は、0.25 _r乃至0.25 ₀であった。円柱誘電体1 3C及び接地導体11Cの円筒半径r_d_gは、0.23 _r乃至0.33 _rの間で変化 させた。最適化には無給電素子A1-A6のベースのリアクタンス値セットを含み、リア クタンス値×₁、×₂、×₃及び×₄の最適化範囲は-90 乃至-5 であり、第1の 実施形態に係る電子制御導波器アレーアンテナ装置の対称性を使用して最適化変数の数を 減らして×₅ = ×₃及び×₆ = ×₂とした。給電素子A0の高さh_a及び接地導体11C の長さh_sはそれぞれ、9.8mm及び30.2mmで一定に保った。無給電素子A1-A6の幅は、1.8mmであり、給電素子の半径は、0.5mmであった。 20

[0041]

次の表1は、シミュレーションした当該アレーアンテナ装置100Cの最適設計パラメ ータを示したものである。 【0042】

【表1】

第1の実施形態において最適化されたアンテナの寸法及びリアクタンス値

10

パラメータ	最適結果	2. 484GHzにおけるサイズ(mm)
h _s	0. 25λ _o	30. 2
h _{dp}	0. 447λ _r	17. 5
h	0. 25λ,	9. 8
r _{dg}	0. 317λ,	12. 4
x ₁₋ x ₆	{18,18,-46,-8,-46,-18}Ω	_

20

【0043】

第1の実施形態に係るアレーアンテナ装置100Cは、自由空間に配置された第1の従 来例の電子制御導波器アレーアンテナ装置100Aに比べて半径は79%、高さは18% 低減し、同じ周波数でサイズ(容積比)は事実上1/33になった。

【0044】

図6は図1のアレーアンテナ装置100Cのシミュレーション結果であって、H面の指向特性を示す図であり、図7は図1のアレーアンテナ装置100Cのシミュレーション結果であって、E面の指向特性を示す図である。図6及び図7から明らかなように、90°の半値電力幅で4.83dBの指向性利得を得ることができた。 【0045】

30

第2の実施形態に係るアレーアンテナ装置100Dにおいても、アレーアンテナ装置1 00Dの構造について、第1の実施形態と同様に、アンソフト社製高周波電磁界構造シミ ュレータ(HFSS)を用いてシミュレーションし、マルチニッチクラウディングを採用 する所定の遺伝的アルゴリズムを使用して構造パラメータ及びリアクタンス値セットに対 して最適化した。

[0046]

第2の実施形態で用いる誘電体13Dはポリカーボネートにてなり、その電気特性は、 比誘電率 「が2.9で損失正接が0.006であった。第2の実施形態に係るアレーア 40 ンテナ装置100Dを用いることにより、プリント基板であるテフロン基板50を用いて 構成される無給電素子A1-A6を誘電体13Dに対して平らに形成できる。ここで、本 発明者らは、当該アレーアンテナ装置100Dについて、無給電素子A1の方向の利得が 最大となるように、かつ周波数2.484GHzで90°未満の半値電力幅について最適 化した。

【0047】

本発明者らのシミュレーションにおいては、無給電素子A1-A6の高さh_pの最適化 範囲は、0.282 _r乃至0.381 _rであった。無給電素子A1-A6の幅は、6 mmで一定であり、誘電体13Dの高さh_dは常に、無給電素子A1-A6の長さh_pよ り7mmだけ長い。給電素子A0は1mmの半径を有し、その高さh_aを0.226 _r 乃至0.247 _r間で最適化した。接地導体11Dの半径及び誘電体13Dの内周半径 r_dgは、0.211 _r乃至0.31 _r間で最適化した。接地導体11Dの長さh_s は最適化変数ではなく、0.25 ₀に設定した。無給電素子A1-A6に装荷された可 変リアクタンス素子12-1乃至12-6のリアクタンス値×₁-×₆は、-73 から 14 まで変化させた。この場合も、上述と同じく対称性を利用して、リアクタンス最適 化変数の数を減らした。

【0048】

次の表2は、シミュレーションした当該アレーアンテナ装置100Dの最適設計パラメ ータを示したものである。

[0049]

【表2】

10

20

30

パラメータ	最適結果	2.484GHzにおけるサイズ(mm)
h _s	0. 25λ _o	30
h _p	0. 296λ _r	20
h _d	0. 380λ _r	27
h,	0. 24λ,	17. 5
r _{dg}	0. 268λ,	21
x ₁ _x ₆	{-69, -73, 2, 6, 2, -73}Ω	_

第2の実施形態において最適化されたアンテナの寸法及びリアクタンス値

[0050]

当該最適設計パラメータによれば、2.8 d B i の絶対利得及び周波数2.484 G H z で 7 6 の半値電力幅が得られた。第2の実施形態においては、自由空間に配置された 第1の従来例の電子制御導波器アレーアンテナ装置に比べて半径は69%、高さは6%低減し、同じ周波数でサイズ(容積比)はほぼ1/11になった。

【0051】

図8は図3のアレーアンテナ装置100Dのシミュレーション結果であって、日面の指 向特性を示す図であり、図9は図3のアレーアンテナ装置100Dのシミュレーション結 果であって、E面の指向特性を示す図である。図8及び9は日面及びE面の正規化された 放射パターンであり、レムコム社製電磁界シミュレーションソフトウエア「XFDTD」 (現在電磁界解析法の標準的な手法のひとつであるFDTD(Finite Difference Time Domai n、時間領域差分法)を使った3次元電磁界シミュレーションソフトウエアである。)を 使用して、第2の実施形態のシミュレーション結果を検証した。XFDTDによるシミュ レーションは、利得及び半値電力幅をそれぞれ3.91dBi及び68°と計算した。こ れは、HFSSを使用して計算された結果よりも優れていた。

40

[0052]

図10は図3のアレーアンテナ装置100Dの実験結果であって、日面の指向特性(主ビームの方位角が0,60,120,180,240,300度のとき)を示す図である。また、図11は図3のアレーアンテナ装置100Dの実験結果であって、日面の指向特性(主ビームの方位角が30,90,150,210,270,330度のとき)を示す図である。図10及び図11から明らかなように、図8のシミュレーション結果と実質的に一致していることがわかる。なお、図10及び図11において、主ビームの方位角にお

ける最大利得を付記している。

【産業上の利用可能性】

【0053】

以上説明したように、本発明に係る実施形態によれば、給電素子A0を中実の誘電体1 3C又は13D内に埋め込み、かつ無給電素子A1-A6をその外周面上に形成すること により、電子制御導波器アレーアンテナ装置を大幅に小型化できる。

【図面の簡単な説明】

示すブロック図である。

【0054】

【図1】本発明の第1の実施形態に係るアレーアンテナ装置100Cの構成を示す斜視図である。

【図2】図1のアレーアンテナ装置100Cを用いるアレーアンテナの制御装置の構成を

10

【図3】本発明の第2の実施形態に係るアレーアンテナ装置100Dの構成を示す斜視図である。

【図4】図3のアレーアンテナ装置100Dの上面を示す上面図である。

【図 5】図 3 のアレーアンテナ装置 1 0 0 D の無給電素子 A 1 の下部付近の構成を示す詳 細正面図である。

【図 6 】図 1 のアレーアンテナ装置 1 0 0 C のシミュレーション結果であって、 H 面の指 向特性を示す図である。

【図7】図1のアレーアンテナ装置100Cのシミュレーション結果であって、E面の指 20 向特性を示す図である。

【図8】図3のアレーアンテナ装置100Dのシミュレーション結果であって、日面の指 向特性を示す図である。

【図9】図3のアレーアンテナ装置100Dのシミュレーション結果であって、 E 面の指 向特性を示す図である。

【図10】図3のアレーアンテナ装置100Dの実験結果であって、H面の指向特性(主ビームの方位角が0,60,120,180,240,300度のとき)を示す図である

【図11】図3のアレーアンテナ装置100Dの実験結果であって、日面の指向特性(主 ビームの方位角が30,90,150,210,270,330度のとき)を示す図であ ³⁰ る。

【図12】第1の従来例に係る電子制御導波器アレーアンテナ装置100Aの構成を示す 斜視図である。

【図13】第2の従来例に係る電子制御導波器アレーアンテナ装置100Bの構成を示す 斜視図である。

【符号の説明】

【 0 0 5 5 】

A 0 ... 給電素子、

A1乃至A6…無給電素子、

R1,R2,R3...抵抗、

1...低雑音増幅器(LNA)、

2…ダウンコンバータ、

3 ... A / D 変換器、

5...給電用同軸ケーブル、

6...サーキュレータ、

7....無線受信機、

1 1 C , 1 1 D ... 接地導体、

12-1乃至12-6…可変リアクタンス素子、

13A,13B,13C,13D...誘電体、

20…コントローラ、

2 1 … C R T ディスプレイ、 4 1 , 4 2 … スルーホール導体、 5 0 … テフロン基板、 5 1 …導体パターン、 6 1 , 6 2 …端子導体、 6 3 …ねじ、 1 0 0 A , 1 0 0 B , 1 0 0 C , 1 0 0 D … アレーアンテナ装置。

【図6】

【図9】

【図10】

【図12】

【図13】

フロントページの続き

- (72)発明者 韓 青
 京都府相楽郡精華町光台二丁目2番地2 株式会社国際電気通信基礎技術研究所内
 (72)発明者 稲垣 惠三
- 京都府相楽郡精華町光台二丁目2番地2 株式会社国際電気通信基礎技術研究所内 (72)発明者 飯塚 泰
- (72)発明者 齋藤 茂 埼玉県さいたま市見沼区宮ヶ谷塔4丁目72番地 アンテナ技研株式会社内
- (72)発明者 大平 孝 京都府相楽郡精華町光台二丁目2番地2 株式会社国際電気通信基礎技術研究所内
 - 審査官 佐藤 当秀
- (56)参考文献 特開2001-345633(JP,A) 特開2002-164730(JP,A) 特開2002-135036(JP,A) 特開平10-173431(JP,A) 特開平05-327527(JP,A) 特開平05-014032(JP,A)
- (58)調査した分野(Int.Cl., DB名) H01Q 1/00-25/04